Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert systems
نویسندگان
چکیده
The aim of this article is to present a new approach to machine learning (precisely in classification problems) in which the use of fuzzy logic has been taken into account. We intend to show that fiazzy logic introduces new elements in the identification process, mainly due to the facility to manage imprecise information. An inductive algorithm generating a set of fuzzy rules identifying the system will be achieved. The maximal structure of a fuzzy rule will be found using this algorithm.
منابع مشابه
Fuzzy Rule Extraction for Determining Creditworthiness of Credit Applicants
The main objective of this research paper is to provide an empirical analysis of the hybrid symbolic/connectionist expert system development tool SC-net to act as a viable system for acquiring expert system knowledge by means of learning. The task to be studied is the prediction of creditworthiness for credit seeking applicants. The creditworthiness domain-unlike many other domains studied by t...
متن کاملKnowledge acquisition for fuzzy expert systems
Expert systems have been successfully applied to a wide variety of application domains. To achieve better performance, researchers have tried to employ fuzzy logic to the development of expert systems. However, as fuzzy rules and membership functions are difficult to define, most of the existing tools and environments for expert systems do not support fuzzy representation and reasoning. Thus, i...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملA new method for constructing membership functions and fuzzy rules from training examples
To extract knowledge from a set of numerical data and build up a rule-based system is an important research topic in knowledge acquisition and expert systems. In recent years, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a new fuzzy learning algorithm based on the alpha-cuts of equivalence relations and the alpha-cu...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fuzzy Sets and Systems
دوره 101 شماره
صفحات -
تاریخ انتشار 1999